LA - Determinants
Determinants $A = (a_{ij})$ is a square matrix, then the determinant of $A$ is a number. Denoted by: $det(A)$ or $|A|$ Minor of entry $a_{ij}$: $M_{ij}$ Cofactor of entry $a_{ij}$ = $C_{ij} = (-1)^{i+j} M_{ij}$ Formula of $det(A)$: $\sum^n_{j=1} a_{1j} C_{1j} = \sum^n_{j=1} a_{1j}(-1)^{1+j} M_{1j}$ Smart choice!!! Choose the row/ column with most zeros!!! How an operation affects the value of determinant: Swap the row/column: đổi dấu giá trị det Multiply a row/ column with $\lambda$: nhân $\lambda$ với giá trị det cộng trừ các hàng cột với nhau: det giữ nguyên If a matrix has two equal rows or columns, its determinant = 0. If a matrix has two proportional rows or columns, its det = 0. $A, B$ are two square matrices of the same size: $det(AB) = det(A)*det(B)$ $det(\alpha AB) = \alpha^n*detA*detB$ with $n$ is the rank of the matrices. A minor of A of order k: chỉ những matrix vuông có kích thước k*k trong matrix lớn. The rank of A được kết luận từ matrix con có cạnh k lớn nhất c